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I will discuss one of the leading methods used to model large
metabolic reaction networks in living cells. This approach is known as

the stoichiometric constraints-based approach because it uses constraints
based on the stoichiometry of the system in an optimization setting.



BIOINFORMATICS S.G. 1

Outline

? Background and motivation for new modeling methods.

? Modeling reaction kinetics using the law of mass action.

? Stoichiometric constraints-based optimization approaches.

? Two examples, one hypothetical and one real physical example.

? Discussion.
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Scaling-Up to Systems Biology

(Westerhoff and Palsson, 2004)
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Classical Methods of Analysis

Unlike classical mechanics in physics, this field does not have the luxury of a
long history of research because attempts to develop a general basis for a
mathematical description of living organisms have only been made in recent
decades.
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Classical Methods of Analysis

Unlike classical mechanics in physics, this field does not have the luxury of a
long history of research because attempts to develop a general basis for a
mathematical description of living organisms have only been made in recent
decades.

? The Law of Mass Action:

? Wilhelmy (1850) measured the velocity of mutarotation of simple sugars.
? Waage and Guldberg (1864, 1867) assumed reversibility of each

elementary reaction and identified the ’forward’ and ’reverse’ rates.
? Harcourt and Esson (1866) discovered the law independently.

? Michaelis–Menten Enzyme Kinetics:

? Named after Michaelis and Menten (1913).

? Nonequilibrium Thermodynamics:

? Influential work by Onsager (1931) and Hill (1989).



BIOINFORMATICS S.G. 4

The Law of Mass Action

For a system involving M reactions and N chemical species with jth reaction
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A closed system will go to equilibrium, whereas an open system will go to a
nonequilibrium steady state (NESS).
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Detailed Balance

When in equilibrium, the forward and reverse fluxes are equal
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Open, Living Systems

Starting with the original mass-action kinetics
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the detailed balance conditions can be broken by incorporating external input
and output fluxes
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Michaelis–Menten Enzyme Kinetics

For enzyme-catalyzed reactions, represented as
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we can make the quasi-steady-state assumption that
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where KM,s is known as the Michaelis–Menten rate constant.
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Reversible Michaelis–Menten Enzyme Kinetics

For
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Nonequilibrium Thermodynamics

The chemical potential of a species is given by

µi = µo
i + RT lnxi,

from which we get the reaction potential, given by
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and, for a closed loop of reactions j1 → j2 → · · · → jz → j1,

∆µj1 + ∆µj2 + · · ·+ ∆µjz = 0.
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Limitations of Classical Methods

? Typically, the biochemical networks of interest are very large and complex.
As a result, it is extremely difficult to solve for analytic solutions of the
models.
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Limitations of Classical Methods

? Typically, the biochemical networks of interest are very large and complex.
As a result, it is extremely difficult to solve for analytic solutions of the
models.

? Experimentalists are limited in the amount of information they can gather
and, in most cases, it is not possible to obtain detailed kinetic-rate
information. Therefore, methods that avoid having to know this information
are needed.

? It is for these reasons that stoichiometric constraints-based approaches
have been developed. These approaches use optimization methods and do
not require any kinetic-rate information.
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the functional states, or phenotypes, of many organisms (Westerhoff and
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Stoichiometric Constraints-Based Approaches

? Genome-scale constraints-based models have been developed to describe
the functional states, or phenotypes, of many organisms (Westerhoff and
Palsson, 2004).

? Stoichiometric Network Theory (SNT) uses the static, algebraic structure of
biochemical networks, within which chemical “motion” must take place.

? This method of anlysis has been successfully applied to systems such as
E. coli (Edwards and Palsson, 2000), mitochondrial energy metaboilsm
(Ramakrishna et al., 2001), and metabolism in hepatocyte cells (Beard and
Qian, 2005).
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Stoichiometric Network Theory

Returning to the general mass-action equation for a system of N species and
M reactions

dxi(t)
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we can rewrite the system of equations in matrix form as

dx
dt

= SJ + Jext.

Since this system is being driven by external fluxes, it will go to a NESS.
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Flux Balance Analysis

In NESS, the concentrations of the chemical species are not changing and we
have

SJ = −Jext,

which is known as the flux balance constraint of FBA. Note that this constraint
is similar to Kirchoff’s current law of electrical circuit theory.

Additional constraints can be applied to the NESS fluxes such as

Jj
lb ≤ Jj ≤ Jj

ub ∀j ∈ {1, 2, . . . ,M}

(Jext)i
lb ≤ (Jext)i ≤ (Jext)i

ub ∀i ∈ {1, 2, . . . , N}.
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Energy Balance Analysis

Define µ as the N -dimensional vector of chemical potentials, then the
M -dimensional vector of reaction potentials, ∆µ, is given by

STµ = ∆µ.

We can define the nullspace matrix K ∈ RM×(M−N−r) with columns that form
a basis for the nullspace of S, so that SK = 0. Then we have the constraint

KT STµ = KT∆µ = 0,

which is a constraint for the conservation of energy and is similar to Kirchoff’s
loop or voltage law of electrical circuit theory.
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Energy Balance Analysis

If we define the nonnegative forward and reverse reaction fluxes so that
J = J+ − J−, then the reaction potential is

∆µj = RT ln

(
Jj
−

Jj
+

)
,

which leads us directly to the second law of thermodynamics, i.e.,

−Jj∆µj = −RT
(
Jj

+ − Jj
−

)
ln

(
Jj
−

Jj
+

)
≥ 0.

Entropy must increase and the system must dissipate heat,

hdr = −JT∆µ > 0.
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The Optimization Problem

min
J,J+,J−,Jext,∆µ

f(J,J+,J−,Jext,∆µ)

s.t. SJ + Jext = 0

KT∆µ = 0

diag
(
e∆µ/RT

)
J+ − J− = 0

J− J+ + J− = 0

Jlb ≤ J ≤ Jub

0 ≤ J+ < ∞
0 ≤ J− < ∞

Jext
lb ≤ Jext ≤ Jext

ub

∆µlb ≤ ∆µ ≤ ∆µub
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Sequential Quadratic Programming

? We can solve the problem for any given, smooth, linear or nonlinear,
objective function using a Sequential Quadratic Programming (SQP)
algorithm.

? The basic idea of an SQP method is to step toward an optimal solution by
iteratively approximating the problem by quadratic subproblems.

? A simple interpretation of an SQP algorithm is to view it as an application of
Newton’s method to the Karush–Kuhn–Tucker optimality conditions, i.e.,

∇xL(x∗,λ∗) = ∇f(x∗)−
∑

i∈A(x∗)

λ∗i∇ci(x∗) = 0.
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The Quadratic Subproblem

Linearizing at the current iterate xk, we get the subproblem

min
p

1
2
pT Hkp +∇fT

k p

s.t. ∇ci(xk)Tp + ci(xk) = 0, i ∈ {1, 2, . . . ,m}

∇ci(xk)Tp + ci(xk) ≥ 0, i ∈ {m + 1, . . . , n},

which gives the search direction used to update the current iterate

xk+1 = xk + αk pk

by doing a line search.



BIOINFORMATICS S.G. 19

A Hypothetical Example

Consider:

A + 2B 
 C

C + D 
 2A + 2B

A + B 
 2D

A + C 
 B + 3D

B 
 D,

The nullspace matrix is:

K =


−0.7163 −0.3345
−0.3205 −0.4347
0.4710 −0.6349
−0.3958 0.1001
−0.0752 0.5348



The stoichiometric matrix is:

S =


−1 2 −1 −1 0
−2 2 −1 1 −1
1 −1 0 −1 0
0 −1 2 3 1



and it gives:

k̂1 :

0.6411A + 1.0368B + 0.7163C + 0.3205D

k̂2 :

0.8693A + 0.7692B + 0.3345C + 0.4347D
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A Hypothetical Example

Using FBA alone to maximize D output:

Case 1
rxn J species Je

1 0 A 1
2 0 B 0
3 1 C 0
4 0 D -1
5 -1


1
0
0
−∞

 ≤ Je ≤


1
0
0
0



Case 2
rxn J species Je

1 0.05 A 10
2 10.09 B 20
3 20.17 C 20
4 9.96 D -90
5 29.87


10
1
1
−∞

 ≤ Je ≤


10
20
20
0


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A Hypothetical Example

Using FBA and EBA to maximize D output and minimize total energy:

rxn J J+ J− ∆µ Je species
1 -0.95 13.63 14.58 0.067 10 A
2 8.35 56.04 47.69 -0.161 20 B
3 16.94 113.85 96.91 -0.161 20 C
4 10.70 85.22 74.52 -0.134 -90 D
5 32.36 143.66 111.30 -0.255 hdr = 13.83

f = Je
D +

∆µT∆µ

2
10
1
1
−∞

 ≤ Je ≤


10
20
20
0


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A Hypothetical Example

Using FBA, EBA, and heat constraint to maximize D and minimize total
energy:

rxn J J+ J− ∆µ Je species
1 0.00 6.04 6.04 0.00 10 A
2 10.44 12.87 2.43 -1.67 20 B
3 21.33 22.12 0.79 -3.33 20 C
4 9.56 11.78 2.23 -1.67 -90 D
5 29.11 29.31 0.20 -5.00 hdr = 250

With the additional constraint:

hdr ≥ 250
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Saccharomyces cerevisiae

Overall, the net reaction of fermentation is the convertion of glucose to ethanol
and carbon dioxide

C6H1206 −→ 2C2H5OH + 2CO2.

? Under anaerobic conditions, most of the energy from the sugar is
transferred to ethanol and growth of the yeast cells is minimized.

? Temperature is an important environmental factor for yeast because above
the optimal temperature of 30◦C, metabolism begins to slow, and when heat
begins to denature the proteins in the cell, metabolism decreases rapidly.

? Under anaerobic conditions with a complex medium and glucose as the
substrate, a continuous culture of S. cerevisiae has a specific rate of heat
production of 0.2 W · g−1.
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Saccharomyces cerevisiae
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Saccharomyces cerevisiae

Assume we measure reaction fluxes in units of µmol ·min−1 ·mg protein−1

and reaction potentials in units of J ·mol−1. Furthermore, assume that the
temperature of the system is 30◦C.

Experimental values are available for some reaction fluxes:

rxn transport HK PGI PFK ALD TPI GAPDH
Vmin -24.3
Vmax 0.36 0.84 1.26 0.68 1.19 8.4 4.4
rxn PGK PGM ENO PYK PDC ADH

Vmin -4.8 -3.0
Vmax 9.4 1.35 4.05 0.65

(Teusink et al., 2000)

hdr ≥ 0.2W · g−1
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unbranched branched
FBA FBA, EBA, & heat FBA FBA, EBA, & heat

rxn J J J+ J− ∆µ J J J+ J− ∆µ

transport 0.33 0.33 1.02 0.69 -971 0.36 0.36 0.75 0.39 -1659
HK 0.33 0.33 1.02 0.69 -971 0.36 0.36 0.75 0.39 -1658
PGI 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1420
PFK 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1422
ALD 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1420
TPI 0.33 0.33 1.02 0.69 -971 0.23 0.23 0.64 0.41 -1126

GAPDH 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2379
PGK 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2379
PGM 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2380
ENO 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2378
PYK 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2377
PDC 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2377
ADH 0.65 0.65 1.21 0.56 -1943 0.51 0.51 0.85 0.35 -2270

ATPase 0.65 0.65 1.21 0.56 -1943 0.32 0.31 0.72 0.41 -1422
Glycogen - - - - - 0.02 0.02 0.25 0.23 -234
Trehalose - - - - - 0.02 0.02 0.23 0.21 -203
Glycerol - - - - - 0.07 0.07 0.41 0.34 -476

Succinate - - - - - 0.01 0.01 0.22 0.20 -166
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Discussion

? By combining FBA and EBA constraints, we are certain that the feasible
solutions are mass balanced and thermodynamically realistic.

? Using an SQP to solve the optimization problem allows us to combine the
FBA and EBA constraints and consider many different objective functions.

? This method allows us to study a system on the whole genome scale and
do in silico experiments instead of in vitro or in vivo experiments.

? The classical methods for modeling biochemical networks are limited in
their power. Using stoichiometric constraints-based approaches, we are
able to quantitatively study the possible phenotypes of a system.

? SNT has been shown to be a very accurate and useful tool for studying
mutant and disease affected organisms.
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